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Abstract: This paper deals with the problem of coloring a two-dimensional segmentation result in such a way that each

segment has a different color with the constraint that adjacent segments have sufficiently distinct colors to be

easily distinguishable by a human viewer. Our solution for this problem is based on a balanced coloring of the

neighborhood graph built from the area Voronoi diagram. The balanced coloring with only a limited number

of colors is subsequently modified to assign each segment a unique color. For picking the initial palette of

evenly distributed colors, we propose a method that is based on the physical analogy of energy minimization

in a Wigner crystal. To make the energy formula applicable to arbitrary color spaces and distance measures,

we give generalized definitions for the center and radius of a color space with an arbitrary distance metric.

The individual steps of our coloring algorithm have been evaluated on the PRIMA dataset.

1 Introduction

Segmentations of images are typically visualized

as color images, in such a way that pixels belonging

to the same segment have the same color, while pixels

belonging to different segments have different colors

(Saund et al., 2009) (Shafait et al., 2006). When the

segmentation has to be checked or corrected by a hu-

man observer, it is however not sufficient to assign

different colors to different segments, because adja-

cent segments are hard to distinguish when their col-

ors are too similar. This applies in particular to docu-

ment image segmentation, in which the segments rep-

resenting text lines, paragraphs, words, characters, or

similar are embedded in white background. Hard to

distinguish neighboring segments are both a problem

when looking for segmentation errors by visual in-

spection, as well as in the process of creating ground

truth data for segmentation evaluation studies or train-

ing purposes.

Ideally, the chosen coloring would satisfy a gener-

alized graph coloring problem:

Given a neighborhood graph of n segments,

n colors c1, . . . ,cn, and a distance metric

d(ci,c j) on the colors, find a node color-

ing that maximizes the minimum distance be-

tween adjacent colors.

Some ordinary graph coloring problems are special

cases of this problem: the “equitable coloring prob-

lem” (Pemmaraju et al., 2003), e.g., is the special case

of only k different colors evenly distributed among the

c1, . . . ,cn, and d being the trivial metric. In the gen-

eral case of a nontrivial metric, this is a difficult op-

timization problem that presumably cannot be solved

in polynomial time.

Our goal in the present paper is therefore more

modest: we only propose algorithms for selecting and

assigning colors in such a way that the minimum dis-

tance between adjacent colors is “not too small”. Our

approach consists of two steps: first the neighborhood

graph is colored with only a small number of colors.

Each of these colors is then considered as the center

of a color cluster, whose colors are distributed among

the nodes belonging to the center color.

2 The neighborhood graph

There are different definitions of segment “neigh-

borhood”, some based on geometric distance and oth-

ers based on adjacency. In our case, we are not in-

terested in the nearest neighbors of a segment, but

in all adjacent segments. It is thus natural to define

the neighborhood graph as the dual graph of the area

Voronoi diagram generated by the segments.

2.1 The area Voronoi diagram

For a set of two dimensional points P = {p1, . . . , pn},

the ordinary (or point) Voronoi diagram is a tessel-

lation of the plane into disjoint cells such that the
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Figure 1: A point Voronoi diagram (left) and an area
Voronoi diagram of three segments (right).

Voronoi cell of point pi is given by

V (pi) = {p : ‖p− pi‖ ≤ ‖p− p j‖ for all j 6= i}
where ‖p − q‖ denotes the Euclidean distance be-

tween p and q. In other words, every point in V (pi)
is closer to pi than to each other point in P. Fig. 1

shows the resulting Voronoi cells for a sample set

of six points. The Delaunay graph associated to a

Voronoi diagram has a node for each Voronoi cell and

edges between neighboring cells.

The area Voronoi diagram is a generalization of

the ordinary Voronoi diagram in such a way that the

tessellation is not generated by points, but by non

overlapping objects S = {s1, . . . ,sn}. Every point in

the Voronoi cell V (si) is then closer to object si than

to any other object:

V (si) = {p : min
q∈si

‖p−q‖ ≤ min
q∈s j

‖p−q‖ for all j 6= i}

The right figure in Fig. 1 shows the area Voronoi cell

boundaries for an example of three objects. In our

application case, the objects are the segments of the

segmentation. The sought neighborhood graph then

corresponds to the area Voronoi diagram. Let us call

this neighborhood graph the area Delaunay graph.

2.2 Computing the area Delaunay

graph

As the area Voronoi diagram can be useful for

bottom-up page segmentation, a number of methods

have been suggested for its computation (Arcelli and

di Baja, 1986) (Lu and Tan, 2005) (K. Kise, 1998).

For instance, it can be computed exactly with a re-

gion growing approach, which can either be done di-

rectly on the image with pixel labeling, or on some

representation of the segment contours. To reduce

the runtime, Kise et al. suggested to compute the

area Voronoi diagram approximately by first comput-

ing the point Voronoi diagram from contour sample

points and then merging cells belonging to the same

segment (K. Kise, 1998).

When only the area Delaunay graph is of inter-

est and the exact shape of the Voronoi cells does

not matter, the contour sample points can be used

to directly compute a point Delaunay triangulation.

The area Delaunay graph is then obtained by merging

nodes belonging to the same segment. We have cho-

sen this approach because it can be done efficiently

in O(n logn) time for n points (Devillers, 2002). For

a typical document layout, the sample points contain

several collinear points which result in degenerate tri-

angles that incorrectly have edges between non adja-

cent points. It is therefore necessary to clean up these

triangles after computing the triangulation.

Concerning the sampling rate for the contour

points, the experiments described in Sec. 4.1 have

shown that taking between 20% and 30% of the con-

tour points yields a reasonable compromise between

accuracy and speed.

3 Coloring the graph

Our coloring algorithm for the neighborhood

graph is a two step approach: first the graph is colored

with a small number k of colors; then this coloring is

modified so that every node obtains a different color.

In two subsections, we propose algorithms for the fol-

lowing problems: (a) how to choose the initial k col-

ors and the final full set of n colors, and (b) how to do

the initial k-coloring and modify it to an n-coloring.

3.1 Color selection

The problem of color palette selection is usually con-

sidered under the optimization criterion of a best

match between the palette and given images. An

interesting exception is Moijsilović and Soljanin’s

scheme for picking a color palette from a spiral lat-

tice in the CIE L*a*b* color space (Mojsilovic and

Soljanin, 2001). The resulting colors however depend

on a number of input parameters and it is not even

clear which input parameters lead to a given number

n of valid colors in RGB space, nor have they pro-

posed criteria for “good” parameter choices.

In our situation, we seek k colors c1, . . . ,ck that

are “most different” from each other. Each color ci

is a vector of three values representing red, green and

blue. Defining a color distance measure that mod-

els visual perception is a very difficult problem, and a

wide variety of distance measures d(ci,c j) have been

proposed. The best known are the Euclidean distance

in RGB space dRGB or the CIE L*a*b* color distance

dLab:

dRGB(ci,c j) = ‖ci − c j‖
dLab(ci,c j) =

[

(L(ci)−L(c j))
2 +(a(ci)−a(c j))

2

+(b(ci)−b(c j))
2
]1/2

(1)
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More sophisticated distance measures include the

CIE94 and the HCL color distance (Sarifuddin and

Missaoui, 2005), or the DIN99 distance (Deutsches

Institut für Normung, 2001).

Concerning the “optimality” criterion for the color

palette, let us first observe that in an Euclidean space,

an optimal equidistant distribution is taken on by elec-

trons repelling each other, a configuration also known

as Wigner or Coulomb crystal (Rafac et al., 1991).

The equilibrium distribution of these minimizes the

electric potential energy

ϕ(c1, . . . ,ck) = ∑
i> j

e2

‖ci − c j‖
+∑

i

γ‖ci‖2 (2)

where e denotes the electric charge of the electrons

and γ is the strength of a harmonic attractor in the

center. It is thus natural to define as a criterion for

the optimal color palette that it minimizes (2) with

the Euclidean distance ‖ci −c j‖ replaced with a color

distance measure d(ci,c j). As we cannot use the color

white w (reserved for the image background) and ad-

ditionally would like to keep the color black b for

noise left over from an incomplete segmentation, we

add the “potential energy” stemming from these two

points to (2). This means that we seek to minimize

ϕ(c1, . . . ,ck) = ∑
i> j

1

d(ci,c j)
+∑

i

γ
(

d(ci,µ)
)2

+

∑
i

α

d(ci,w)
+∑

i

β

d(ci,b)
(3)

where each color c = (cr,cg,cb) is subject to the con-

straint 0 ≤ cr,cg,cb ≤ 255, and µ is the center of the

color space (see Sec. 4.2 for a precise definition of this

center). The constants α and β have been introduced

for convenience so that it is possible to optionally en-

force a smaller or larger distance of the colors from

black or white.

In Sec. 4.2, the resulting color distribution for dif-

ferent color metrics and k = 6 (the minimum num-

ber of colors for the coloring algorithm described

in Sec. 3.2) is given. Interestingly, the best results

are not obtained with the more sophisticated distance

measures, but with the simple Euclidean distance in

the RGB space.

For the final full set of n different colors, we con-

sider each of the initial k colors c1, . . . ,ck to be the

core of a “color cluster” of n/k colors. We subse-

quently add colors one-by-one to a cluster around ci,

such that each added color fulfils two conditions:

• on the discrete RGB color grid, it is the neighbor

to one of the colors that are already in the clusters

• among all possible new neighbors, the neighbor c

with the closest distance to the color center ci is

chosen.

3.2 Balanced coloring and its

modification

As the area Delaunay graph is planar, it can be col-

ored in linear time, e.g. with the 6-COLOR algorithm

by Matula et al. (Matula et al., 1980). This algorithm,

however, does not produce a balanced coloring, be-

cause among the colors not yet used in a node neigh-

borhood it always picks the “smallest” color. We have

replaced this color selection step with a simple heuris-

tic: instead of the smallest color, we select the color

that has been used least frequently so far. This simple

rule lead to an equitable coloring in almost all of our

experiments described in Sec. 4.3.

To modify the initial balanced k-coloring into a

complete n-coloring, the n/k colors of each color

cluster need to be distributed among the nodes as-

signed to the respective color cluster. To this end, we

have implemented three different methods, which all

traverse the graph in a breadth-first search. They dif-

fer in the way a color for a node belonging to color

cluster Ci is chosen, based on the colors already as-

signed to its neighbors:

a) random method: select a random yet unused color

from Ci

b) maxdist method: select the yet unused color from

Ci with the greatest distance to the neighbor node

colors

c) coredist method: select the yet unused color from

Ci with a distance to its closest neighbor node

color similar to the distance between the color

cluster cores

In our experiments (see Sec. 4.4), the random and the

coredist method were comparable and better slightly

worse 1 than the maxdist method. For most practical

purposes, the simple random method will thus be a

sufficient solution, that is both easy to implement and

efficient.

4 Experiments and results

We did a number of experiments to evaluate the in-

dividual steps of our algorithm, which we have imple-

mented in C++ within the Gamera framework for doc-

ument analysis and recognition 2. As document test

images, we used the PRIMA dataset (Antonacopou-

los et al., 2009) which, at the time of our experiments,

consisted of the 55 test images from the page segmen-

tation competition of the two ICDAR conferences in

2007 and 2009. As the segments to be colored, we

1typo in original paper
2http://gamera.sf.net/
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Figure 2: Effect of the contour sampling rate on the edge
error rate and on the runtime.

did not consider the segments marked in the ground

truth data, but the connected black components, be-

cause these were much more segments (about 5200

per image).

4.1 Sampling rate for the Delaunay

graph

For different contour sampling rates, we have mea-

sured the number of edges in the resulting Delau-

nay graph that differ from a reference graph with a

100% sampling rate. The average results over all im-

ages, with the runtimes measured on an Intel Core2

1.66GHz processor, are shown in Fig. 2. It can be seen

that a sampling rate between 20% and 30% yields an

error rate already below 1.5%, thereby setting a rea-

sonable compromise between accuracy and speed.

4.2 Optimal initial k colors

To numerically compute the color configuration that

minimizes Eq. (3), we have used the Monte Carlo

algorithm described by Rafac et al. in (Rafac et al.,

1991). It simply consists in moving downhill from

N randomly chosen starting points and picking the

global minimum from these local minima. We chose

N = 1000. When applying Eq. (3), the question arises

µ r

RGB (127,127,127) 220
L*a*b* (135,130,126) 142
HCL (210,209,209) 311
CIE94 (133,137,107) 83
DIN99 (128,124,120) 82
HSV (194,194,194) 1.25

Table 1: RGB values of center and radius of different color
space according to Eqs. (5) and (6).

how to choose the attracting strength γ, which is re-

lated to the radius r of the Coulomb cluster. For an

unconstrained Euclidean space, (Rafac et al., 1991)

gives the relation

2r ≈ k0.4687(2γ)−1/3 (4)

Solving for γ and setting 2r =
√

3 ·255 yields the re-

lation how to increase γ with k in the Euclidean RGB

space. The resulting minimum energy configurations

for α = β = 1 for different values of k are displayed

in Fig. 3.

Generalizing Eqs. (3) and (4) to an arbitrary color

space first requires an appropriate definition of the

center color µ and the radius r of the color space.

A generalized definition of the arithmetic mean µ of

x1, . . . ,xN can be derived from its property to mini-

mize ∑i ‖xi − µ‖2. We thus define the center color µ

and the radius r of a color space with color distance d

as

µ = argmin
m

∑
c

d(c,m) (5)

r = max
c

d(c,µ) (6)

where c runs over all possible RGB colors. The

numerical values resulting from this definition are

listed in Tbl. 1 for six different distance metrics:

the Euclidean distance in RGB and L*a*b* space,

the DIN99 distance (Deutsches Institut für Normung,

2001), the CIE94 and HCL distance (Sarifuddin and

Missaoui, 2005), and the cylindrical distance in HSV

space (Ikonomakis and Plataniotis, 1999).

Using the values from Tbl. 1 and with α = β = 1,

we have determined the minimum energy choice of
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Figure 3: Minimum energy configurations for k colors in the Euclidean RGB space.
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Figure 4: The color distributions minimizing Eq. (3) with respect to different color distance metrics.

k = 6 colors. This is a natural choice for k, because

it is the minimum number of colors required by the

graph coloring algorithm 6-COLOR. Moreover, in

this case the energy minimum with respect to the Eu-

clidean distance in RGB is already known (six colors

in the corners of the RGB cube), which provides a

nice benchmark against which we can compare other

color distance metrics. Fig. 4 shows the results for the

six different distance metrics.

Both the HCL and L*a*b* distance result in a

poorer distribution than the RGB distance, because

both include two similar green hues. Interestingly, the

same HCL and L*a*b* results are obtained when the

RGB result is used as a starting point for the mini-

mization algorithm: both distance metrics make the

distribution worse. Even though the CIE94 distance

results in six visually different colors, one of them is

almost black, despite the repelling potential from the

β-term in Eq. (3). The same applies to the DIN99 dis-

tance which even leads to two colors that are almost

black. For the cylindrical HSV distance, we obtain

even three almost black colors, but this is due to a

fundamental shortcoming of this distance measure in

case of colors that have a low intensity, but a high sat-

uration because one of the primary colors is zero.

Our experiments thus provide a justification for

the intuitive approach to select colors in the cor-

ners of the RGB cube, even though this includes the

somewhat similar colors green (0,255,0) and cyan

(0,255,255). Finding a color distance measure and an

optimization criterion that perceptually improves this

distribution is an interesting area of further research.

4.3 Balance of the initial k-coloring

A coloring is equitable, when the color counts do not

differ by more than one (Pemmaraju et al., 2003). Our

balanced variant of the 6-COLOR algorithm pro-

duced indeed equitable colorings for 51 of the 55 test

images. In each of the remaining four images, there

was one color count difference of two and the other

counts differed not more than one. This shows that

the simple heuristic color selection rule indeed results

in a balanced coloring.

4.4 Quality of the final n-coloring

To compare the quality of the three color distribu-

tion methods described in Sec. 3.2, we have measured

both the minimum and the average RGB distance be-

tween neighboring node colors. Tbl. 2 lists the av-

eraged results over the N = 55 test images. Both

the minimum and average distances decrease with the

number k of initial colors. This shows that our ap-

proach of building color clusters around few initial

colors is an improvement over the naive approach

of picking n evenly distributed initial colors, which

would be the extreme case k = n.

All three methods for modifying the k-coloring

into an n-coloring lead to similar mean and minimum

color distances between neighboring nodes. The sim-

ple maxdist method, which always picks the most far

away color among all free colors from a color cluster,

leads to the largest distance. Even though the ran-

dom method leads to smaller distances, its runtime

is only linear in the number of nodes, while the run-

times other two methods are quadratic in the number

of nodes. The random assignment of colors from a
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method mean dist min dist

k = 6 maxdist 325.6 239.3
random 325.1 234.6
coredist 325.3 235.4

k = 16 maxdist 259.8 120.0
random 259.0 115.0
coredist 259.6 115.4

k = 26 maxdist 233.8 77.4
random 233.3 73.1
coredist 233.6 73.9

Table 2: Mean and minimum RGB color distance between
neighboring nodes for the three color distribution methods
and different numbers k of core colors, averaged over all
images from the PRIMA dataset.

cluster to its nodes will therefore often be a sufficient

and reasonable approach in practice.

5 Conclusions

The methods proposed in this paper provide a

practical solution for using colors as segmentation la-

bels in such a way that the segmentation is easily visi-

ble in the resulting color image for a human observer.

Nevertheless, there remain two interesting areas of

further research. One consists in finding better ways

for selecting the initial k colors, both with respect to

the optimization criterion Eq. (3) and to an appropri-

ate color distance measure. As the latter problem of

defining a perceptual color distance is a very diffi-

cult problem still waiting for satisfactory solutions,

it might alternatively be more promising to perform

psychological experiments for directly selecting the k

perceptually “most different” colors. The other open

problem is the more fundamental algorithmic ques-

tion whether there is an efficient exact or approximate

solution for the generalized graph coloring problem

stated in the introduction.
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