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Abstract

The automatic reconstruction of three-dimensional particle tracks from Active Target Time Projection Chambers data can be a
challenging task, especially in the presence of noise. In this article, we propose a non-parametric algorithm that is based on the idea
of clustering point triplets instead of the original points. We define an appropriate distance measure on point triplets and then apply
a single-link hierarchical clustering on the triplets. Compared to parametric approaches like RANSAC or the Hough transform,
the new algorithm has the advantage of potentially finding trajectories even of shapes that are not known beforehand. This feature
is particularly important in low-energy nuclear physics experiments with Active Targets operating inside a magnetic field. The
algorithm has been validated using data from experiments performed with the Active Target Time Projection Chamber developed
at the National Superconducting Cyclotron Laboratory (NSCL).The results demonstrate the capability of the algorithm to identify
and isolate particle tracks that describe non-analytical trajectories. For curved tracks, the vertex detection recall was 86% and the
precision 94%. For straight tracks, the vertex detection recall was 96% and the precision 98%. In the case of a test set containing
only straight linear tracks, the algorithm performed better than an iterative Hough transform.
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1. Introduction

One of the present aims of modern low-energy nuclear
physics is to provide a more complete understanding about the
behavior of subatomic matter under large isospin (i.e. large
neutron-proton imbalance) [1]. Near the landscape drip lines,
atomic nuclei exhibit astonishing properties such as disappear-
ance of magic numbers, exotic collective modes (i.e. develop-
ment of neutron/proton halos and giant resonances) or a rear-
rangement of the matter in cluster and molecular structures. In
addition, the vast scenario that composes the nucleosynthesis of
heavy elements through different astrophysical processes, pri-
marily involves very exotic nuclei. Aware of the impact that this
research will pose, the nuclear physics community is striving
to upgrade and construct state-of-the-art facilities worldwide in
order to achieve the required exotic beam intensities that would
allow for a comprehensive and efficient study of the unexplored
region of the landscape [2].

The production of exotic beams also involves the develop-
ment of associated instrumentation capable of providing the ob-
servables of interest in a reasonable amount of time for the ex-
pected rates. Active Target Time Projection Chambers (hence-
forth AT) detectors are designed to provide high luminosity
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(rate of interactions) while preserving the resolution needed to
obtain the variables from which relevant information about the
nuclei is inferred [3]. ATs consist of a relatively large gaseous
medium that acts as target and detector at the same time. They
provide a target thickness that could be up to two orders of
magnitude larger than conventional solid targets and also the
capability of recording three-dimensional particle tracks with
high geometrical efficiency covering a solid angle of 4π. In this
sense, ATs detectors are able to push the rate limits at which
low-energy nuclear physics experiments can be performed, with
intensities as low as 100 pps (particle per second). More-
over, placing the detector inside a magnetic field enables high-
resolution spectrometer operation [4, 5].

Contrary to High Energy Physics (HEP) experiments, nu-
clear reactions at low energy (in the range of few hundreds of
keV up to several hundred MeV) produce charged particles in
a broad range of atomic number (Z) and mass (A), and also
with very different kinetic energy. Since the reaction of interest
occurs inside the AT medium, the detector has to cope with a
large energy dynamic range which is directly reflected on the
distribution of patterns and shapes of tracks that the particles
describe in the gas under a magnetic field. While particles with
relatively high energy will describe helical trajectories (projec-
tions can be considered circular), the ones with low energy
will describe non-linear trajectories as they are progressively
stopped in the gas. In addition, particle tracks are connected
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through the vertex of the reaction from which the energy of the
beam at the interaction point can be inferred.

Generally speaking, ATs are versatile detectors that can be
deployed in different experiments covering a wide variety of re-
actions such as resonant scattering or nucleon transfer, that are
normally performed using beams with energies from few MeV
up to several tens of A MeV [6, 3, 7]. The particle multiplic-
ity in these reactions is relatively low, from two up to several
particles, depending on the physics case of interest. In order
to reconstruct the kinematics of the reaction completely, the in-
formation from the beam and from each reaction product has
to be extracted. That includes the angles with respect to the
beam direction, and their range and/or their curvature, depend-
ing if a magnetic field was used. Other types of reactions for
which ATs are one of the most promising approaches are elas-
tic/inelastic scattering and charge exchange with fast beams
(more than 100 A MeV). In this case, the relevant kinematic
information is obtained from particles that are emitted at very
forward angles in center-of-mass which essentially implies very
low kinetic energy (or short range).

Although ATs are the answer to many experimental demands
in low-energy nuclear physics experiments, the analysis of the
data is a complicated and demanding task that needs to be per-
formed in different steps. Before performing any comprehen-
sive kinematic analysis, one needs to break down every image
recorded by the AT in order to extract different features. The
purpose is twofold: identify events where a reaction happened
and isolate every particle track. Due to the large amount of col-
lected data (data streaming during an experiment can be of the
order of hundreds MB/sec), and efficient and fast discrimina-
tion of useful events is mandatory. The requirements are quite
restrictive: The algorithm needs to isolate every track, even very
short ones, while preserving the information about the reaction
vertex.

A common approach for detecting shapes in noisy point
clouds consists in a parametric description of the shapes and
to search for parameter values representing shapes with many
points. This requires the shape of the tracks to be known a pri-
ori, and it leads to a voting scheme for parameter values, which
can be either done exhaustively for all points (Hough transform
[8]) or by random sampling (RANSAC [9]). In the absence of
a magnetic field, the tracks are straight lines, which can easily
be described parametrically, and both RANSAC and the Hough
transform have been applied to this special case [10, 11]. This is
not generalizable to the case of unknown shapes like they occur
in the presence of a magnetic field.

We therefore present a new, non-parametric approach in the
present article. It is based on first building point triplets, which
are then partitioned into clusters, such that each cluster repre-
sents a track. The idea of grouping triplets was recently sug-
gested by Lezama et al. for detecting continuations in 2D dot
patterns [12]. Their algorithm looks for symmetric triplets only,
and the grouping is based on overlapping points. Although that
algorithm could be generalized to 3D in a straightforward way,
it is applicable only in the special case of locally equidistant
points without random perpendicular spread around the actual
curve. As these assumptions do not hold in the case of AT

data, we change both steps of the algorithm: firstly, we do not
look for symmetric triplets, but for triplets with approximately
collinear branches, and, secondly, we group the triplets with a
single link hierarchical clustering utilizing an appropriately de-
fined triplet distance metric.

The algorithm has been developed within the framework of
the AT detector developed at the NSCL (the so-called AT-TPC),
which operates inside a solenoid that provides a magnetic field
up to 2 T [4]. The source code of this framework is available
from github1. Considering the conditions in which low-energy
physics experiments are performed, the particles of interest de-
scribe trajectories that cannot be described by an analytical ex-
pression in closed form. This algorithm has been tailored to
extract such curved tracks described by every reaction partner
recorded on a event-by-event basis. Once the tracks are iso-
lated, a Monte Carlo fit is applied to extract the variables of
interest with better precision [4]. The fit makes use of the pa-
rameters of each curve, namely curvature and angle with re-
spect to the beam direction, to numerically generate a collec-
tion of simulated tracks that are compared to the experimental
one using an objective function. Therefore, the algorithm must
provide the initial parameters with enough precision to ensure
the proper convergence of the fit. With a broad experimental
program2, the development of a generic and fast algorithm that
addresses this unprecedented situation is mandatory for low-
energy physics experiments using ATs in magnetic fields.

The present article is organized as follows: in section 2, we
give a brief overview of the AT measurement technique, and
in section 3 we describe the three experimental data sets used
throughout this article. Section 4 describes the algorithm in de-
tail, section 5 presents its performance on our test data sets, and
section 6 makes recommendations for practical deployments of
the algorithm.

2. Active target time projection chambers

The working principle of ATs is the same as Time Projection
Chambers [13] with the particularity that the tracking medium
acts as the target. This limits the type of gas used for track-
ing since typical experiments in nuclear physics are performed
with proton, deuteron, 3He or 4He targets, among others. The
detector consists of gas volume in which a strong uniform elec-
tric field (typical values are 100 V/cm) is applied along one of
the volume coordinates. The uniform electric field is created
by a set of electrodes defining a drift volume (field cage) with
a geometry defined by the requirements of the detector. Ioniza-
tion electrons released by particles that cross the volume, drift
towards the anode electrode where a segmented readout plane
is deployed. Therefore, each ionization electron cloud is pro-
jected onto a pad of the plane from where the x and y coordi-
nates can be determined. The third z coordinate is deduced from
the drift time of the electrons assuming a constant drift velocity

1https://github.com/ATTPC/ATTPCROOTv2
2A list of approved experiments at the NSCL can be found here: https://

enterprise.nscl.msu.edu/completedExperiments/ (e18027, e18019,
e18008, e17504, e17025, e15250, e15238)
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Figure 1: Schematic view of the prototype AT-TPC (pAT-TPC). The solid and
dashed arrows represent particles and the ionization electrons, respectively.
Zreac denotes the vertex of the reaction. More details can be found in Ref. [14].

that depends on the gas and on the voltage. The pads also col-
lect the total charge which is proportional to the local energy
loss. Fig. 1 illustrates the main working principle of ATs us-
ing the prototype AT-TPC (pAT-TPC) as an example [14, 15].
The detector has a cylindrical configuration with the electric
field applied between the cathode and the pad plane (right end).
The beam enters the chamber through the cathode end and it is
slowed down in the gas. When a reaction takes place with one
of the target nuclei (Zreac refers to the reaction vertex), reaction
products are emitted with a characteristic angle and energy dis-
tribution. Every particle track is projected into the pad plane as
explained before: The beam and the products are projected into
a small spot and a straight line, respectively, as can be seen in
the figure. The energy of the reaction products can be inferred
from the track length and from their characteristic energy loss
pattern.

Depending on the reaction of interest and also on the energy
of the beam, particles with relatively large energy can escape
from the detector. In this case, the identification of the parti-
cle and the determination of its energy is not possible anymore
because part of the track is lost. As consequence, the total effi-
ciency of the detector is reduced. In order to extend the energy
dynamic range of the detector and preserve its excellent effi-
ciency, one of the solutions is to place the AT inside a solenoid
magnet. This enables the measurement of the magnetic rigid-
ity of the particle by determining the radius of curvature of the
track. The energy of the particle (and also its nature) can be
determined with a very simple relationship:

Bρ =
p
q

(1)

where B is the magnetic field, ρ is the radius of curvature,
p is the momentum of the particle (from where the energy is
inferred) and q is its charge. The AT-TPC, which is an im-
proved version of the pAT-TPC featuring larger volume and
higher granularity, is presently the only AT operated under a
magnetic field. The detector consist of a cylindrical gas volume
of length 1 m and 29.2 cm of radius with a pad plane segmented
in triangular pads of 0.5 cm (inner region) and 1.0 cm (outer
region) of height. The detector is placed inside a large-bore

solenoid magnet capable of producing a uniform magnetic field
up to 2 T. Further details about the detector can be found in
Ref. [4]. The detector was successfully commissioned using the
4He+4He (detector filled with 4He gas [11]) and 46Ar+proton
(detector filled with C4H10 gas) [16] reactions in inverse kine-
matics. These two reactions, which represent typical exper-
iments in low-energy nuclear physics, provide very different
benchmark points: In the former, the angle between both identi-
cal 4He particles, which amounts to 90◦ exactly, can be used to
infer the resolution of the detector and of the tracking method.
The latter reaction provides a rather different scenario: The
mass of the 46Ar is approximately 46 times larger than that of
the proton, and therefore the tracks of the particles and their
energy loss profiles exhibit a very different topology. In either
case, the trajectories cannot be described by analytical expres-
sions, which emphasizes the need of a novel tracking algorithm
better suited to this type of experiments using the emerging AT
technology in worldwide nuclear physics facilities.

3. Data description

The image of each track is recorded by measuring the drifting
electrons that arrive to the highly-segmented pad plane (10,240
pads in total). The charge collected in each pad generates a
pulse whose amplitude is proportional to the charge. The pulses
are digitized in parallel using a dedicated and generic data-
acquisition system (General Electronics for TPCs [17]) con-
sisting of 40 ASIC boards featuring 256 12-bit ADC (4096
channels). The pulse is sampled with a maximum frequency
of 100 MHz and 512 sampling time bins. The centroid of each
pulse is used to extract the mean time (tdrift) that is used to infer
the z coordinate using a simple relationship:

z = vdrift · tdrift (2)

where vdrift is the drift velocity of the ionization electrons.
vdrift is about 2.0 and 5.20 cm/µs for 4He and C4H10 gases, re-
spectively. Finally, the x and y coordinates are inferred from the
centroid of the triangular pads with 0.5 and 1.0 cm of height,
deployed in the inner and outer region of the pad plane, respec-
tively.

An sketch of the AT-TPC and a 3-dimensional hit pattern of
a 4He+4He reaction event are shown in Fig. 2. In this event, a
4He beam particle penetrates the detector from the right side,
and interacts with a 4He atom of the gas. After the reaction,
both particles are emitted in forward direction, with a charac-
teristic angle and energy, describing curved trajectories. Both
particles stop in the gas as they continuously lose energy. Each
point of the hit pattern corresponds to a pad that recorded the
ionization electrons (e−) that drifted from the point where the
particle ionized the gas to the pad plane (situated on the left end
cap). Fig. 3(a) shows the projection of the ionization electrons
into the pads of the plane for this 4He+4He event. In order to
remove noise points, the resulting hit pattern was filtered us-
ing the Statistical Outlier Removal filter provided by the Point
Cloud Library (PCL) [18]. It is worth mentioning that due to
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Figure 2: A sketch of the AT-TPC representing a 4He+4He event and a 3-
dimensional hit pattern. A strong electric field (E) is applied within the gas
volume to drift the electrons (e−) to the pad plane where the tracks are projected
on a triangular pad structure. Operating the detector in a magnetic field (B)
allows the measurement of the curvature of the track.

the stochastic nature of the time structure of the beam, two ad-
ditional (pile-up) 4He beam particles entered the detector within
the same time window as the particle that generated the event.
In order to mitigate the effect of pile-up, which may cause a
misidentification of the beam particle that reacted, the detector
was tilted around 7o [4]. As can be seen in Fig. 3(a), the pile-
up particles are projected into two short straight lines emerging
from the same vertex. In addition, the track of the beam parti-
cle that generated the event does not appear in the hit pattern,
probably because the reaction happened very close to the en-
trance window. Note that the absolute z coordinate depends on
the timing of the particle that is detected first.

Fig. 3(b) shows the pad plane image of a proton emitted in the
46Ar+p reaction [16]. In this case, the gain in the region of the
pad plane where the 46Ar was projected was highly reduced to
avoid saturation effects, and therefore the corresponding track is
not shown. As can be clearly seen, proton tracks have a stronger
curvature that changes as the particle slows down. The com-
plexity for this case resides in the fact that the phase space (i.e.:
number of possible angle-energy states) of the proton can be
vast, depending on the experiment. Since the length and curva-
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Figure 3: Projections on the pad plane of two different events. The color scale
shows the activation level or charge collected in each pad. As the particle stops,
the radius of curvature decreases and the energy loss increases.

ture of the spiral strongly depends on the energy of the particle,
it is extremely challenging to find a unique solution based on
parametric approaches, as these curves cannot be described by
a simple analytical approach.

According to these two scenarios that represent typical ex-
periments with ATs, the track finding algorithm proposed in
this work has to cope with several difficulties: multiple tracks
have to be found and categorized to provide an efficient pile-
up rejection mechanism, such tracks have to be found without
any prior knowledge of their shape, the vertex has to be found
even in absence of the beam particle track, the algorithm has to
be immune to the large energy dynamic range for different par-
ticles and to noise sources (electronics, detector discharge...).
The algorithm must be also capable of reconstructing a non-
continuous track that has multiple gaps in the hit pattern, as
the ones shown in Fig. 3. In addition, taking into account the
amount of data generated during an experiment, the algorithm
must be computationally inexpensive, or in the best-case sce-
nario, run concurrently. While tracking every particle is desir-
able, the reconstruction of the kinematics of the reaction re-
quires only the inference of the energy and angle of one of
the reaction products of a binary reaction, preferably the lighter
one. This entails a considerable flexibility in the design of the
algorithm that can be adapted to different situations.

4



Table 1: Overview over the algorithm and the external parameters controlling each step. Default values are recommendations taken from section 5.

Step Parameter Default value
1) neighborship smoothing rsmooth = neighbor distance 2 · dNN

2) triplet building ktriplet = tested neighbors of triplet mid point 19
ntriplet = max number of triplets to one mid point 3
atriplet = 1 − cosα, where α is 0.03

the angle between the two triplet branches
3) triplet clustering scluster = distance scale factor in metric dNN/3

tcluster = threshold for cdist in clustering 3.5
4) pruning mcluster = min number of triplets per cluster 8

In order to test the performance of the proposed algorithm,
we have prepared three different sets of data extracted from
the above-mentioned experiments: two sets extracted from the
4He+4He experiment with (data set I) and without magnetic
field (data set III), respectively, and a set consisting of 46Ar+p
events with magnetic field (data set II). Each data set is a collec-
tion of events acquired during these experiments. The 4He+4He
data sets are characterized, as explained before, by two tracks
of different length, curved or straight depending on the mag-
netic field, and an additional straight track corresponding to the
beam particle. These three tracks are connected by a common
point known as reaction vertex. In the 46Ar+p data, only pro-
tons tracks, characterized by a very different radius of curva-
ture, conform the hit pattern.

4. Track detection algorithm

The algorithm for grouping the points into possibly overlap-
ping clusters or noise consists of four steps:

1. smoothing by position averaging of neighboring points
2. finding triplets of approximately collinear points
3. single link hierarchical clustering of the triplets
4. pruning by removal of small clusters

Each step can be controlled by external parameters which are
listed in table 1. The parameter values should be adjusted for
each experiments. The default values are only meant as first
guesses, when no other information is available.

The individual steps and the meaning of the parameters are
described in detail in the following subsections. It should be
noted that, although steps 2)-4) are done on the smoothed data
points, the point indices are not lost during smoothing, so that
the final clustering actually is a grouping of the original points.

4.1. Pre-processing

Some steps in the algorithm are controlled by thresholds on
distances. Although these thresholds can be provided by an
operator, it is preferable to have reasonable guesses for these
thresholds based on internal properties of the data. One partic-
ular property is the distance between neighboring points. This
distance varies with the physical properties of the particles (e.g.
their velocity) and the ambient chamber gas (e.g. its pressure)
and is thus different from experiment to experiment. From a
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Figure 4: Effect of the neighborhood smoothing with rsmooth = 2 · dNN.

geometrical point of view, it has the effect of a scale parame-
ter and can thus be considered as a characteristic length for the
experimental setup. It is also an indicator for the spread of the
points around the actual particle track.

To obtain an estimator for the point distance, we compute,
for each point, the distance to its nearest neighbors. The first
quartile of all these distances is our characteristic length dNN.
We have chosen the first quartile, because it typically lies within
a track of a slower particle, even in the presence of considerable
noise. This value will vary from point cloud to point cloud
even for the same experimental setup, but it nevertheless can be
considered as a scale parameter, because when all coordinates
are scaled with the same factor, dNN will scale with this factor,
too.

To reduce the spread of the measured points around the par-
ticle trajectories, we perform a neighborship smoothing, which
replaces the coordinates of each point ~p by the mean

∑k
i=1 ~qi/k

of the points ~q1, . . . , ~qk in its neighborship. A point ~qi is consid-
ered to belong to the neighborship of ~p, if its distance ‖~qi − ~p‖
is less than a threshold rsmooth. The averaging sum always con-
tains at least one point, because a point is always part of its
own neighborship. As dNN is a measure for the spread of the
points, we use it as a scale factor for the default value, i.e.,
rsmooth = 2 · dNN. Figure 4 shows the effect of this smoothing
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operation: points without neighbors in the rsmooth range remain
unchanged, whereas points in denser regions are moved towards
the middle axis of the track.

4.2. Triplet grouping

The second step in the algorithm consists of building groups
of three approximately collinear points, i.e., triplets. An exam-
ple of a triplet is shown in figure 5(a). As TPC data are ordered
in time direction, the indices of the node points A = ~qi, B = ~q j,
and C = ~qk are subject to the condition i < j < k. The cosine of
the angle α between the triplet branches is given by

cos(α) =
〈AB, BC〉

‖AB‖ · ‖BC‖
=
〈~q j − ~qi, ~qk − ~q j〉

‖~q j − ~qi‖ · ‖~qk − ~q j‖
(3)

For the hierarchical clustering described in the following sub-
section, each triplet is represented by two vectors, the midpoint
~m and the direction ~e between the outer points:

~m =
1
3

(
~qi + ~q j + ~qk

)
and ~e =

~qk − ~qi

‖~qk − ~qi‖
(4)

The triplets are computed from the point cloud in a loop
over all points. Each point is considered as a possible mid-
point B, and all points among its ktriplet nearest neighbors are
tried as candidate points A and B. The triplet is discarded, if the
triplet angle α) is greater than the threshold implied by atriplet,
or, equivalently, if

〈AB, BC〉

‖AB‖ · ‖BC‖
< 1 − atriplet (5)

From the remaining triplets of each midpoint, only the ntriplet

triplets with the smallest angle α, or, equivalently, with the
greatest cos(α) are kept. For n points, the total number of
triplets is thus not more than n · ntriplet.

4.3. Hierarchical clustering

The third step of the algorithm consists in a hierarchical clus-
tering, which starts with each triplet as a separate cluster and
merges in each iteration two clusters. The exact procedure is
described in Algorithm 1. It depends on a distance measure

Algorithm 1 Hierarchical clustering
Input: set of triplets X = {x1, . . . , xm}, threshold tcluster on clus-

ter distance
Output: triplet clustering M = {C1, . . . ,Ck}

1: M ← {Ci = {xi}, i = 1, . . . ,m}
2: for i = 1, . . . ,m − 1 do
3: from all pairs Ci,C j ∈ A, select the pair with smallest

distance cdist(Ci,C j)
4: if cdist(Ci,C j) > tcluster then
5: break
6: end if
7: Ch ← Ci ∪C j

8: M ←
(
M \ {Ci,C j}

)
∪ {Ch}

9: end for
10: return M

cdist(Ci,C j) on clusters Ci that can be constructed from a dis-
tance measure d(x, y) on triplets x, y in different ways, known
as complete link, average link, or single link clustering [19].
In our situation, only the single link method is appropriate be-
cause, for curved tracks, the angle distance between triplets of
the same cluster can become large. The single link method de-
fines the cluster distance as

cdist(Ci,C j) = min{d(x, y) | x ∈ Ci, y ∈ C j} (6)

This leads to the question how to define a metric on triplets.
Let us start with the observation that two triplets (Ai, Bi,Ci) and
(A j, B j,C j) are similar when three conditions hold:

1. the perpendicular distance d⊥1 between the midpoint ~mi and
the extrapolated line ~m j + λ~e j is small, which is

d⊥1 = ‖ ~m j − ~mi + 〈 ~mi − ~m j, ~e j〉 · ~e j‖ (7)

2. the perpendicular distance d⊥2 between the midpoint ~m j

and the extrapolated line ~mi + λ~ei is small, which is

d⊥2 = ‖ ~mi − ~m j + 〈 ~m j − ~mi, ~ei〉 · ~ei‖ (8)

3. the angle ϕ between their direction vectors ~e is small,
which is

ϕ = cos−1
(
|〈~ei, ~e j〉|

)
(9)

We combine these three distance measures into a single mea-
sure via

d
(
(Ai, Bi,Ci), (A j, B j,C j)

)
=

max{d⊥1 , d
⊥
2 }

scluster
+ | tanϕ| (10)

We use the tangens as an angle distance measure, and not
one minus the cosine, because the tangens goes to infinity as
ϕ → ±π/2, which means that perpendicular triplets have an in-
finite distance, regardless of their spatial distance. The scale
factor scluster allows for controlling the relative effect of angle
and perpendicular distance.

We recommend to set the default value for scluster propor-
tional to dNN. This has the effect that the distance measure be-
comes scale invariant, because when all point coordinates are
scaled with the same factor, dNN scales with this factor too. A
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scale invariant distance measure has the advantage, that an ab-
solute threshold tcluster can be used for stopping the clustering
process in Algorithm 1, because the distances fall into an ap-
proximately predictable range. Figure 6 shows a typical exam-
ple, for which the threshold tcluster stops the clustering at the
“elbow” of the cluster distances cdist.

4.4. Pruning

To distinguish actual tracks from random clusters due to
noise, it is necessary to remove some of the clusters in a post-
processing step. We have applied a very simple rule and re-
moved all clusters containing less than mcluster triplets. If the
data is known to be almost noise free, mcluster can be set to two.
As this is rarely the case, we recommend a default value of
mcluster = 3.

4.5. Runtime considerations

As the four steps are processed sequentially, the order of the
total runtime is the order of slowest step. Here is a runtime
analysis of the individual steps where n is the number of points
in the point cloud:

1. Both the estimation of dNN and the neighborship smooth-
ing are O(n2) operations when they are implemented by
simple loops. The nearest neighbor retrieval can be re-
duced to O(n log n) time with a kd-tree, but only on aver-
age. To achieve worst case O(n log n) runtime, other al-
gorithms have been suggested [20, 21]. For the distance
search, a utilization of a kd-tree leads to O(n · n2/3) run-
time, but this can be further reduced to O(n log3 n) when a
range tree is used [22].

2. The number of triplets that need to be evaluated for build-
ing the triplets is

(
n
3

)
, which is O(n3). Utilization of the

point order, as suggested in section 4.2, reduces the run-
time by a constant factor, but does not change the expo-
nent. As we do not try all possible triplets, but only search
for candidate points among the ktriplet nearest neighbors,
the runtime reduces to O(k3

triplet · n log n), where the factor
n log n stems from the all-nearest-neighbor search.

3. The runtime complexity of Algorithm 1 is O(m3) where m
is the number of triplets [19], but this can be reduced to

Figure 7: Screen-shot of the interactive software for ground truth labeling.

O(m2) with the utilization of Rohlf’s MST-algorithm [23,
24]. As we make the restriction of keeping only the ntriplet

“best” triplets for each candidate midpoint, the number of
triplets is only O(n), not O(n3), as it were if we kept all
triplets below the given collinearity threshold atriplet. The
runtime of the clustering step is thus O(n2).

4. As we cannot have more clusters than triplets, the runtime
of the pruning is O(m), which is O(n) due to the restriction
mentioned in the preceding step.

The runtime is thus dominated by the hierarchical clustering
and is O(n2) in total. For the nearest neighbor and range search,
we have used the kd-tree implementation that came with the
Point Cloud Library (PCL) [18]. For the hierarchical cluster-
ing, we have used the library fastcluster [25]. The worst-case
runtime occurred on a point cloud consisting of 666 points with
much noise and strongly curved tracks, which resulted in a large
number of candidate triplets. In this case, the runtime was about
0.5 seconds on an Intel Core i5-6500 CPU @ 3.20GHz proces-
sor. The clustering step took about 70% of the total runtime.

5. Evaluation

With an evaluation of our algorithm, we pursue two different
aims. One is the determination of parameters that lead to a de-
cent clustering of the points into particle tracks. The other one
is an assessment how accurate the physical properties of of the
trajectories can be detected. To this end, we need ground truth
data, in which each point is labeled with its track membership,
and a similarity measure between the ground truth data and a
test clustering.

It should be noted that, although both the parameter opti-
mization and the quality assessment are done on the same test
data, we did not optimize the parameters for each point cloud,
but used a global optimum instead. That way, each individual
point cloud only has a small effect on the parameter choice, and
the quality assessment is not too much optimistically biased.

7



Table 2: Some statistics of the ground truth labels in different data sets. “#”
stands for “number of”.

Data set
Property I II III
# point clouds 99 136 104
# points 8 472 31 724 19 274
noise fraction 6.1% 27.7% 3.3%
minimum # tracks 1 1 2
median # tracks 1 1 3
maximum # tracks 6 6 6
# vertices 37 0 103

5.1. Ground truth data

For the creation of ground truth data, we have written an in-
teractive software that displays the point cloud in such a way
that cluster membership is visualized by colorization. Each
point is assigned to exactly one cluster or it is labeled as noise.
The list of clusters can be edited, and the cluster label of a point
can be changed through a popup menu that appears when click-
ing on the point (see Figure 7). The point coordinates together
with their cluster labels are eventually stored in a CSV file.

Obviously, this approach does not allow for vertex points to
simultaneously belong to more than one trajectory. We have
therefore covered this case by introducing special clusters that
represent multiple memberships, e.g., “cluster 2;4” as a cluster
label for points that belong both to clusters labeled as “2” and
“4”. Although this could theoretically result in up to additional
k(k − 1)/2 clusters, where k is the number of particle tracks,
in practice there are only few crossing trajectories and conse-
quently only few vertices. It is thus a both simple and feasible
way of encoding ambiguities.

5.2. Evaluation criteria

We evaluate the quality of our algorithm with two different
means: a generic measure for the distance between two differ-
ent clusterings based on pairs of points, and by some specific
physical properties of the detected clusters. The generic mea-
sure was used for optimizing the algorithm parameters, and the
physical properties were evaluated to obtain an idea how good
the algorithm works for processing AT measurements.

5.2.1. Clustering evaluation metrics
When comparing a test clustering with a ground truth clus-

tering, the problem occurs that no correspondences between
the cluster labels are known, and that such a mapping is not
even well-defined because the number of clusters can be differ-
ent, clusters may be split, merged or overlap. An established
workaround for this problem is to consider all pairs of points
and to check whether both points belong to the same (S) or to
different (D) clusters in a clustering, which results, when com-
paring two clusterings, in four possible combinations (SS, SD,
DS, or DD) [26, 27]. Over all pairs, the following numbers are
counted:

• a = number of pairs with SS

• b = number of pairs with SD

• c = number of pairs with DS

• d = number of pairs with DD

Actually, these are only three independent numbers, because
their sum is the total number of pairs. Depending on whether
all four dependent or only three independent numbers are used,
the following similarity measures can be constructed:

Rand statistic: R =
a + d

a + b + c + d
(11)

Jaccard coefficient: J =
a

a + b + c
(12)

These coefficients fall into the range 0 ≤ R, J ≤ 1, where R = 1
or J = 1 only hold for exactly identical clusterings. Both co-
efficients have the desirable property that they decrease when a
ground truth cluster is split up or when two ground truth clus-
ters are merged in the test clustering [27]. It is always R ≥ J
and, due to the typically large number d, the Rand coefficient
often is much closer to one. The Jaccard coefficient is thus a
more sensitive indicator for clustering similarity, and we have
use J for optimizing the parameters.

In our situation, we additionally have to deal with noise
points, which we do by treating the noise cluster just like an
ordinary cluster. Moreover, we take care of ambiguous cluster
memberships at vertices in the following way: when one point
of the pair is labeled as ambiguous in the ground truth data, then

a) if the other point belongs to a compatible ground truth
cluster, the pair is counted as SD, if exactly one of the
test cluster labels is “noise”, otherwise it is counted as SS

b) if the other point belongs to an incompatible ground truth
cluster, the pair is counted as DS or DD, dependent on the
test cluster labels

Here, a “compatible ground truth cluster” is either the same
cluster, or one of the clusters that are represented by the am-
biguous “overlap cluster”. Condition a) results in a slightly
optimistic bias of the similarity measures because, at vertices,
other than noise labels in the test clustering are disregarded.
This has, however, only a slight effect due to the small number
of ambiguous points.

5.2.2. Physical cluster properties
For reconstructing the kinematics of an AT experiment, the

following questions are of particular importance:

1. When there is a curved track, is it detected?
2. When there is a vertex, is it detected?
3. What was the smallest curve range that the algorithm de-

tected?

Curved tracks only occurred in test sets I & II, so that the first
question only applies to these data sets. We inspected all curved
tracks in the ground truth data and counted how many of them
were detected at all (more than 25% of its point non-noise), how
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Table 3: Parameter values that lead to the best Jaccard coefficients on the
different data sets. dNN denotes the arithmetic mean of all dNN values in the
specific data set.

Set I Set II Set III
best J 0.9726 0.8844 0.9706
rsmooth 8.31 7.83 7.82
ktriplet 14 10 20
ntriplet 6 2 5
atriplet 0.0291 0.0212 0.0330
scluster 0.9221 1.6159 1.0560
tcluster 3.27 7.48 2.03
mcluster 13 19 8
dNN 4.7 3.3 3.4

many were split into more than one cluster and how many were
merged with a different cluster.

Vertices are junction points between different tracks. When
they join only two tracks, they appear as kinks in a single curve,
i.e., as a discontinuity of the velocity direction vector. In the
ground truth data, points near vertices are labeled with mul-
tiple memberships. In the track detection algorithm, vertices
lead to points that belong to more than one triplet which be-
long to different clusters. When a vertex joins more than two
tracks, different cluster/triplet combinations are possible, and
more than one vertex would be detected by the algorithm. In
order to avoid this, we have merged close by vertices with an
average link hierarchical clustering [25] based on their spatial
distance with a cutoff distance of 2 · dNN. For the remaining
detected vertex points, we have measured two numbers: the
fraction of groundtruth vertices that have been detected (recall),
and the fraction of detected vertices that actually corresponded
to groundtruth vertices (precision).

We define the curve range as the largest pairwise distance be-
tween all points in the same cluster. The smallest detected curve
range was the smallest cluster that corresponded to a ground
truth cluster.

5.3. Results
For finding optimal parameter combinations, we have used

the Nelder-Mead optimization [28] as implemented in the
SciPy3 function scipy.optimize.minimize. This algorithm only
works with real valued parameters, but some of our parame-
ters can only take integer values, namely the parameters ktriplet,
ntriplet, and mcluster. We therefore tested a fixed range of these
integer parameters and optimized the remaining real valued pa-
rameters for each combination with scipy.optimize.minimize.
The tested ranges for the integer parameters were ktriplet ∈

{10, . . . , 25}, ntriplet ∈ {2, . . . , 15}, and mcluster ∈ {2, . . . , 20}.
Table 3 lists the parameters yielding the best Jaccard coef-

ficient J. The values for J are very high for data sets I and
III, which shows that the algorithm works quite well on data
with a small level of noise. On data set II, J is smaller, yet still
satisfactory when the poor data quality is taken into account.

3https://scipy.org/

(a) merged tracks and missed vertex (b) two of three tracks merged,
but vertex not missed

Figure 8: Examples for tracks merged into a single cluster. In the left example
from set I, the track was not split at the vertex which lead to a miss of the marked
vertex. In the right example from set III, the marked track was merged with the
long track, but the vertex was nevertheless detected because of the third (blue)
track. Red points have been classified as noise.

The noise level has impact on the parameters mcluster and tcluster,
too. This is easily understood, because more noise will lead to
more random clusters, which need to be filtered out by a higher
threshold for minimum number of triplets, mcluster. A higher
threshold mcluster also allows for more tolerance with respect to
the maximum cluster distance tcluster.

Without parameter optimization, some recommendations for
an automatic parameter choice based on the characteristic point
distance, dNN, can also be drawn from table 3. The smooth-
ing radius can be set to rsmooth ≈ 2 · dNN. The other scale
dependent parameter, the weighting factor for the spatial dis-
tance with respect to the angle distance in Eq. (10), can be set
to scluster ≈ dNN/3.

The parameter ktriplet, which limits the number of neighbor
points considered for building triplet, should be set according
to the expected track curvature: the optimal value in table 3 is
higher for data sets without (set III) or fewer (set I) bent trajec-
tories.

5.3.1. Data set I

Out of the 99 curved tracks, 94 were correctly identified,
none was split up, and 5 were merged with a touching straight
track. An example for a merge is shown in figure 8(a). Except
for one event, which had a straight track fragment with too few
points, all other 4 merges could be correctly split up at the ver-
tex when the parameters ktriplet and atriplet were chosen smaller.
As all of the merge cases returned only a single track, a practi-
cal approach would be to try more “split-friendly” parameters
in cases for which the default parameters only yield a single
track.

From a total of 37 vertices, 32 were correctly detected, which
is a recall of 86%. Only two non-existent vertices have been er-
roneously detected, which corresponds to a precision of 94%
among the returned vertices. The shortest range among the cor-
rectly identified tracks was about 24 mm.
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(a) noise classified as track segment (b) missed track segment

Figure 9: Examples for track detection errors (marked) in data set II. Red points
have been classified as noise.

5.3.2. Data set II
Theoretically, all events in this data set only have one track

in the form of a spiral plus noise. As this is known a priori from
the experimental setup, a split up of a cluster by the algorithm
does not pose much of a problem. We have therefore split up
some spirals into more than one cluster in the ground truth data
if the spiral had very wide gaps. This resulted in 217 tracks
for the 136 events. Among these, 190 tracks were correctly
detected, 18 were missed, 7 were split, and 2 were merged. Ad-
ditionally, the algorithm returned 5 false positives, i.e., tracks
that actually were noise.

Fig. 9 shows typical examples for these errors: in Fig. 9(a),
a track segment was found that actually was noise, and in
Fig. 9(b), a track segment was missed because it contained less
than mcluster triplets. Whilst the latter problem could be solved
by decreasing mcluster, this would lead to more errors like in
Fig. 9(a) as a side effect. There is thus a trade-off between these
two types of errors.

5.3.3. Data set III
The poorest Jaccard coefficient (0.78) was obtained for the

event shown in figure 8(b): one cluster was missed and merged
with a different cluster due to a too small bent at the vertex. The
vertex was nevertheless correctly detected due to the third track
that also ends at the same vertex.

From a total of 103 vertices, 99 were correctly detected,
which is a recall of 96%. In addition there were 2 false pos-
itive vertices, which leads to a precision of 98% among the de-
tected vertices. The shortest range among the correctly identi-
fied tracks was about 11 mm. It is shown in figure 10.

As in this case all trajectories are straight lines, data set III
provides a nice test set for comparing our new algorithm with
the Hough transform, which is a standard algorithm for finding
lines in point clouds [10]. In order to achieve a fair compari-
son, we have first optimized the two parameters of the Hough
transform, i.e. the spatial cell width dx and the noise threshold
minvotes, such that the Jaccard coefficient was maximized. This
yielded dx = 9.29 and minvotes = 6. Even for this optimal pa-
rameter set, the Hough transform lead on average to a Jaccard
coefficient J = 0.9045, which is considerably smaller than the
value J = 0.9706 of our new algorithm. The difference was
statistically significant for a 5% significance level: the p-value
of the paired t-test was 1.03 · 10−14.

The Hough transform typically has problems with tracks that

Figure 10: The shortest detected track (marked) in all events had a range of
11 mm. Red points have been classified as noise.

noise
track	0
track	1
track	2
track	3

Figure 11: Result of the iterative Hough transform that does not correctly iden-
tify the tracks in this event: some of the points assigned to track 0 and track 3
actually belong to track 2.

come close to each other, because the points are assigned to
tracks solely based on their position. An example is shown in
figure 11: some points from a different track have been assigned
to track 2. Our new algorithm also takes the local curve direc-
tion into account, which it is represented by the triplet orien-
tation. This makes it possible to separate close by tracks with
different orientations.

6. Conclusions

ATs are increasing in popularity in the low-energy nuclear
physics domain as imagers for nuclear reactions due to their
compelling capabilities. However, the analysis of data acquired
with these detectors is a challenging task, in particular if it op-
erates in a magnetic field. In this case, particles describe non-
linear curved trajectories that form complex projection patterns,
specially when the particle multiplicity is high. We have de-
veloped a novel non-parametric clustering algorithm within the
context of ATs to classify and separate tracks without previous
knowledge of their shape, and find the vertex of the reaction.
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The suggested algorithm for track detection was able to find
most tracks and vertices on three different experimental AT data
sets. In the case of absence of a magnetic field, in which case
only straight tracks occur, the new algorithm performed better
than an iterative Hough transform. One particular advantage
of the new algorithm is that it directly returns possible vertex
points as points assigned to more than one cluster. The vertex
recognition rate was 86% in the presence of a magnetic field,
and 96% in the absence of a magnetic field. Such high ef-
ficiency is mandatory for experiments where the rate of valid
events is low. It is worth mentioning that the loss of efficiency
caused by merging two tracks into a single one or by tracks with
missing segments can be mitigated by applying simple kine-
matic constraints during the track reconstruction step [4].

A drawback of the algorithm is its dependence on appropri-
ate choices for a several parameter values. Although we have
suggested default values for these parameters, it is advisable in
general to optimize the parameters on a small selection of sam-
ple events of the same reaction type. This is, however, com-
pletely compatible with the fact that for every different exper-
iment, many physical parameters that determine the topology
and structure of the hit pattern (such as drift velocity or elec-
tronics sampling rate) must be adjusted before the actual data
taking process.

It should be noted that the present work defines the problem
of track detection as a clustering problem, but not as a curve
detection problem. The particle trajectories are left to be in-
terpolated from each cluster, for example with the method de-
scribed in [29]. When such an interpolation is done, some clus-
ters might represent physically improbable or even impossible
trajectories. This could be a useful information that might be
used as feedback to the algorithm for modifying parameters on
the fly.

The promising results obtained in this work suggest that this
algorithm is a powerful tool to analyze data taken with any of
the ATs detectors that are operational in several nuclear physics
facilities around the world [3]
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